ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
J. Andre, G. De Demo, K. Molina, S. Le Tacon, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 149-152
Technical Paper | doi.org/10.1080/15361055.2017.1406246
Articles are hosted by Taylor and Francis Online.
In order to produce laser targets for laser plasma experiments, the target department of Commissariat à l’Energie Atomique operates in different fields of production techniques. Additive manufacturing becomes an important manufacturing process to match quality, delay, and cost aims. In the short term, stereo lithography seems to be the most promising technology for laser target range applications. It is a quick and, in most of the cases, accurate solution to target assembly issues. This technology allows obtaining functional assembly tools as well as parts and components compatible with laser experiment. The actual limitations are about 100 µm for tolerances and minimum wall thicknesses. A better resolution and a lower layer thickness could allow crossing these limitations.