ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Chobriat, O. Raphaël, C. Hermerel, E. Busvelle, A. Choux, P. Merillot, L. Reverdy, M. Theobald
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 132-138
Technical Paper | doi.org/10.1080/15361055.2017.1374813
Articles are hosted by Taylor and Francis Online.
The Digital Holographic Microscopy (DHM) technology allows fast three-dimensional (3-D) surface image acquisition in order to characterize and quantify defects on microshell outer surface. This device captures holograms and reconstructs a double image, one for the intensity and another for the phase. Depending on the used objective lens (20× or 50×) and the microshell diameter, several hundred or thousand pictures must be taken to cover both hemispheres (1170 pictures for a 2200-µm-diameter capsule). A specific handling system using two rotation axes has been developed to acquire automatically all 3-D hemispherical data without any manipulation.
A new version of the 3-D surface rebuilding (using images stitching) and analyzing software is used to characterize (diameter and height measurement) and to localize individual defects, such as bumps or pits. Using a new version of the dedicated software, the pictures are filtered and stitched together to perform a 3-D surface mapping of the capsule. Postprocessing routines are able to detect defects and to sort them out. Specific tools are also dedicated to the characterization of polishing defects, such as concave or clustered defects.
In addition to this, a study of the DHM metrology capabilities, including a comparison with a calibrated atomic force microscope, has been led.