ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Chobriat, O. Raphaël, C. Hermerel, E. Busvelle, A. Choux, P. Merillot, L. Reverdy, M. Theobald
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 132-138
Technical Paper | doi.org/10.1080/15361055.2017.1374813
Articles are hosted by Taylor and Francis Online.
The Digital Holographic Microscopy (DHM) technology allows fast three-dimensional (3-D) surface image acquisition in order to characterize and quantify defects on microshell outer surface. This device captures holograms and reconstructs a double image, one for the intensity and another for the phase. Depending on the used objective lens (20× or 50×) and the microshell diameter, several hundred or thousand pictures must be taken to cover both hemispheres (1170 pictures for a 2200-µm-diameter capsule). A specific handling system using two rotation axes has been developed to acquire automatically all 3-D hemispherical data without any manipulation.
A new version of the 3-D surface rebuilding (using images stitching) and analyzing software is used to characterize (diameter and height measurement) and to localize individual defects, such as bumps or pits. Using a new version of the dedicated software, the pictures are filtered and stitched together to perform a 3-D surface mapping of the capsule. Postprocessing routines are able to detect defects and to sort them out. Specific tools are also dedicated to the characterization of polishing defects, such as concave or clustered defects.
In addition to this, a study of the DHM metrology capabilities, including a comparison with a calibrated atomic force microscope, has been led.