ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
H. Huang, K. Engelhorn, K. Sequoia, A. Greenwood, W. Sweet, L. Carlson, F. Elsner, M. Farrell
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 98-106
Technical Paper | doi.org/10.1080/15361055.2017.1387460
Articles are hosted by Taylor and Francis Online.
The 100-Gbar Laser Direct Drive program calls for ablator capsules with no defects larger than 0.5 μm in lateral dimension and fewer than ten defects with lateral dimensions between 0.1 and 0.5 μm. Compared to laser indirect drive capsules, this represents > 10× reduction of defect length scale and >500× reduction in defect number density. This presents major challenges to both fabrication and metrology. In this paper, we will discuss the proof-of-principle work conducted at General Atomics to identify metrology techniques suitable for 100-Gbar target characterization. We present a detailed study of dark-field imaging, laser scatterometry, and environmental scanning electron microscopey. We identify dark-field imaging as the best approach for meeting the 100-Gbar metrology needs.