ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
E.T. Cheng, R.J. Cerbone
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1654-1658
Nonelectric Applications of Fusion | doi.org/10.13182/FST96-A11963188
Articles are hosted by Taylor and Francis Online.
A small tokamak-based fusion reactor can be attractive for actinide waste transmutation. Equilibrium concentrations of transuranium isotopes were estimated in a molten-salt based fusion transmutation reactor. Nuclear performance parameters were derived for two types of fusion-driven transmutation reactors: Pu-assisted and minor actinides-only systems. The minor actinide-only burning system appears to be the ultimate fusion transmutation reactor. Because such a transmutation system can destroy the minor actinides generated in 35 LWRs, each of which produces the same thermal power as the transmutation reactor. However, a Pu-assisted transmutation reactor may achieve the same thermal power at a lower fusion power because of the higher energy multiplication in the blanket. It can therefore be developed as a shorter-term technology to demonstrate the viable long-term solution to nuclear waste.