ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E.T. Cheng, R.J. Cerbone
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1654-1658
Nonelectric Applications of Fusion | doi.org/10.13182/FST96-A11963188
Articles are hosted by Taylor and Francis Online.
A small tokamak-based fusion reactor can be attractive for actinide waste transmutation. Equilibrium concentrations of transuranium isotopes were estimated in a molten-salt based fusion transmutation reactor. Nuclear performance parameters were derived for two types of fusion-driven transmutation reactors: Pu-assisted and minor actinides-only systems. The minor actinide-only burning system appears to be the ultimate fusion transmutation reactor. Because such a transmutation system can destroy the minor actinides generated in 35 LWRs, each of which produces the same thermal power as the transmutation reactor. However, a Pu-assisted transmutation reactor may achieve the same thermal power at a lower fusion power because of the higher energy multiplication in the blanket. It can therefore be developed as a shorter-term technology to demonstrate the viable long-term solution to nuclear waste.