ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
I. N. Sviatoslavsky, E. A. Mogahed, Y-K. M. Peng, B. E. Nelson, P. J. Fogarty, E. T. Cheng, R. J. Cerbone
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1649-1653
Nonelectric Applications of Fusion | doi.org/10.13182/FST96-A11963187
Articles are hosted by Taylor and Francis Online.
Engineering design issues of a volumetric neutron source (VNS) based on a steady state low aspect ratio DT tokamak are presented. At the present the major radius is 0.8 m, the minor radius 0.6 m for an aspect ratio of 1.33, the plasma current is 10.1 MA, the toroidal field at the major radius is 1.8 T, the fusion power is 39 MW giving an average neutron wall loading of 1.0 MW/m2 on the outboard side with an available testing area of 10 m2. Two neutral beams delivering more than 20 MW are used to drive the steady state fusion plasma. A single turn unshielded water cooled dispersion strengthened (DS) Cu centerpost is used in conjunction with a conducting Cu bell jar which acts as a vacuum boundary and the return legs for the toroidal field (TF) coils. The centerpost is 9 m long, carries 7.2 MA and is specially shaped to minimize ohmic heating, which is calculated using temperature dependent DS Cu properties and increases in resistivity due to nuclear transmutations are accounted for. A naturally diverted plasma scrapeoff layer dominated by pressure-driven instabilities is assumed giving a peak heat flux of 5.2 MW/m2 on the diverter plates. Fabrication approaches for the centerpost and its replacement time lines have been estimated to be feasible and reasonable.