ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yasushi Seki, Isao Aoki, Naoki Yamano, Takashi Tabara
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1624-1630
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963183
Articles are hosted by Taylor and Francis Online.
As a future power producing system, a fusion reactor needs to be superior in environmental safety and economics aspects. Hence the environmental and economic impact of radioactive waste (radwaste) from fusion power reactor should be evaluated. The activation level, decay heat, volume of radwaste generated during operation and at decommissioning, are evaluated for fusion power reactors having five types of structural materials. The structural materials selected are a low activation ferritic steel F82H, austenitic steel SS 316, TiA1 intermetallic compound, SiC/SiC composite with impurities and one without impurities. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. It is found that radwaste from fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to low level waste in Japan. The remaining fusion radwaste which do not qualify as the low level waste could be disposed by geological disposal at the depth greater than 50 m from the surface.