ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ralph W. Moir
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1613-1623
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963182
Articles are hosted by Taylor and Francis Online.
If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 400 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid Flibe, (Li2BeF4) so that the chamber and other apparatus can stand up to these bursts of energy at 6 Hz for 1 GWe without replacing components during the plant's 30-year life. With liquid protection the capacity factor will be increased and the cost of component replacement will be decreased. The design is robust to technology risks in the sense that if the performance of targets, drivers and other components fall short of predictions, the cost of electricity rises surprisingly little. For example at 2 GWe, if it takes twice as much energy to ignite a target as previously projected instead of only 1.5 times, the COE increases 9% from 4 ȼ/kWh, and if the driver cost is increased by 30%, the COE increases by 12%.
The design strategy we recommend is to use conventional engineering principles and known materials in an optimized way to obtain the lowest cost of electricity while keeping the design robust to short falls in predicted cost and performance of components. For a number of components with a high technology risk we have fall-back options. However, good target performance (Gain > 50 for driver energy < 7 MJ) and low cost drivers (<800 M$ direct at driver energy ≥ 7 MJ) would be helpful to achieving good economics.