ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ralph W. Moir
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1613-1623
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963182
Articles are hosted by Taylor and Francis Online.
If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 400 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid Flibe, (Li2BeF4) so that the chamber and other apparatus can stand up to these bursts of energy at 6 Hz for 1 GWe without replacing components during the plant's 30-year life. With liquid protection the capacity factor will be increased and the cost of component replacement will be decreased. The design is robust to technology risks in the sense that if the performance of targets, drivers and other components fall short of predictions, the cost of electricity rises surprisingly little. For example at 2 GWe, if it takes twice as much energy to ignite a target as previously projected instead of only 1.5 times, the COE increases 9% from 4 ȼ/kWh, and if the driver cost is increased by 30%, the COE increases by 12%.
The design strategy we recommend is to use conventional engineering principles and known materials in an optimized way to obtain the lowest cost of electricity while keeping the design robust to short falls in predicted cost and performance of components. For a number of components with a high technology risk we have fall-back options. However, good target performance (Gain > 50 for driver energy < 7 MJ) and low cost drivers (<800 M$ direct at driver energy ≥ 7 MJ) would be helpful to achieving good economics.