ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
L. A. El-Guebaly, H. Y. Khater
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1589-1593
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963178
Articles are hosted by Taylor and Francis Online.
Recent interest in the low aspect ratio (LAR) concept has led the U.S. ARIES team to examine the credibility of this advanced concept as a future source of fusion energy. The compactness of the LAR machine imposes severe constraints on the Cu center post (CP) which thus plays an important role in the design. In view of the fact that the machine operates for 40 y with a relatively high neutron wall loading of 4 MW/m2, the CP will be operating in a severe radiation environment for an extended period of time. The analysis indicated that the lifetime of the CP is limited by the Class C low level waste disposal requirements. Identification of potential radioactive waste problems for the Cu conductor has resulted in either limiting the lifetime of the unshielded CP to 0.12 FPY (corresponding to a fluence of 0.3 MWy/m2) or shielding the CP with 20-30 cm of shield. Since it is not feasible to replace hundreds of tonnes of Cu every 2 months, the CP should be shielded to prolong the lifetime to 4 years or more, reduce the cumulative radwaste and replacement cost, increase the system availability, and alleviate most of the CP radiation damage problems. We have assessed the effects of neutron fluence on conductor resistivity, swelling, and atomic displacement. Even though the radiation-induced swelling and changes to Cu resistivity due to transmutations are small at 0.3 MWy/m2, there is serious concern about the degradation of properties as all Cu alloys experience hardening and loss of ductility under neutron irradiation.