ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. A. El-Guebaly, H. Y. Khater
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1589-1593
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963178
Articles are hosted by Taylor and Francis Online.
Recent interest in the low aspect ratio (LAR) concept has led the U.S. ARIES team to examine the credibility of this advanced concept as a future source of fusion energy. The compactness of the LAR machine imposes severe constraints on the Cu center post (CP) which thus plays an important role in the design. In view of the fact that the machine operates for 40 y with a relatively high neutron wall loading of 4 MW/m2, the CP will be operating in a severe radiation environment for an extended period of time. The analysis indicated that the lifetime of the CP is limited by the Class C low level waste disposal requirements. Identification of potential radioactive waste problems for the Cu conductor has resulted in either limiting the lifetime of the unshielded CP to 0.12 FPY (corresponding to a fluence of 0.3 MWy/m2) or shielding the CP with 20-30 cm of shield. Since it is not feasible to replace hundreds of tonnes of Cu every 2 months, the CP should be shielded to prolong the lifetime to 4 years or more, reduce the cumulative radwaste and replacement cost, increase the system availability, and alleviate most of the CP radiation damage problems. We have assessed the effects of neutron fluence on conductor resistivity, swelling, and atomic displacement. Even though the radiation-induced swelling and changes to Cu resistivity due to transmutations are small at 0.3 MWy/m2, there is serious concern about the degradation of properties as all Cu alloys experience hardening and loss of ductility under neutron irradiation.