ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jeffery F. Latkowski, Javier Sanz, Jasmina L. Vujic, Michael T. Tobin
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1475-1479
Safety and Environment | doi.org/10.13182/FST96-A11963157
Articles are hosted by Taylor and Francis Online.
The majority of radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to a large underestimation in the inventories of radionuclides that make a significant impact upon various radiological indices.1 We have adopted the PCROSS code for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices.2,3 The present work builds upon our previous work and the work completed by R. A. Forrest for magnetic fusion energy devices.4,5 Using this capability we have performed activation calculations for Flibe (2LiF + BeF2) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, we find that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reactions dominate the contact dose rate, and (x,n) reactions do not make a significant contribution. Our results demonstrate the potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation studies should include (x,n) reactions in all calculations until a method for screening their importance in a particular situation has been established.