ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Peter T. Sheehey, Joyce A. Guzik, Ronald C. Kirkpatrick, Irvin R. Lindemuth, David W. Scudder, Jack S. Shlachter, Frederick J. Wysocki
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1355-1359
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963137
Articles are hosted by Taylor and Francis Online.
In Magnetized Target Fusion (MTF), a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions.1,2 Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion (ICF). Bigger targets and much lower initial target densities than in ICF can be used, reducing radiative energy losses. Therefore, “liner-on-plasma” compressions, driven by relatively inexpensive electrical pulsed power, may be practical. Potential MTF target plasmas must meet minimum temperature, density, and magnetic field starting conditions, and must remain relatively free of high-Z radiation-cooling-enhancing contaminants. At Los Alamos National Laboratory, computational and experimental research is being pursued into MTF target plasmas, such as deuterium-fiber-initiated Z-pinches,3 and the Russian-originated “MAGO” plasma.4 In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental investigation of such heavy liner implosions has begun. The status of the research will be presented.