ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. E. Moroz, D. B. Batchelor, B. A. Carreras, S. P. Hirshman, D. K. Lee, V. E. Lynch, D. A. Spong, J. S. Tolliver, A. S. Ware, J. C. Whitson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1347-1354
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963136
Articles are hosted by Taylor and Francis Online.
Novel concepts of an ultra-low-aspect-ratio stellarator system, called a Spherical Stellarator (SS), or a stellarator-tokamak hybrid system, called SMARTH (Small Aspect Ratio Toroidal Hybrid) are discussed for high-β regimes of operation. Self-consistent analysis of the three-dimensional MHD equilibria with inductively driven plasma current or bootstrap current is presented. It is stressed that the bootstrap current in SS can be large and is flowing in such a direction that the rotational transform produced enhances the vacuum rotational transform. This feature increases the equilibrium β-limit. The high-β equilibria in SS and SMARTH (β(0) > 30%, β ⋍ 8-9%) are demonstrated, correspondingly, with the bootstrap current and the ohmic current. Possible experiments and scalings, including those for reactor parameters, are outlined.