ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Gu, M. Williams, R. Stubbers, G. Miley
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1342-1346
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963135
Articles are hosted by Taylor and Francis Online.
Inertial electrostatic confinement (IEC) fusion confines high energy ions in potential wells, where their increased energy and density yields a high fusion rate. Studies of the IEC at the University of Illinois (UI) initially concentrated on steady-state operation where neutron yields of ~106 D-D n/s are routinely obtained. However, the development of a pulsed configuration has been undertaken to provide higher neutron yields. Preliminary experiments have demonstrated I2 scaling during pulsed operation when the perveance threshold of 2.2 mA/kV3/2 is exceeded. Based on these results, it appears that the present IEC could be operated with 3-A, 100-kV repetitive pulses with a 10% duty factor to produce neutron yields of ~1010 neutrons/second.