ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. M. Mayo
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1326-1331
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963132
Articles are hosted by Taylor and Francis Online.
As a member of the compact toroidal class of magnetic fusion devices, the spheromak [Nucl. Fusion 19, 489 (1979)] offers substantial advantage as a fusion reactor concept over larger, more complicated, and more costly re-entrant devices like the tokamak. The compact and simply closed geometry affording high energy density, the inherent diverted nature of the magnetic topology, the force free condition μ0j(r) = ƛ(ϕ)B(r) nature of the spheromak equilibrium minimizing external coil requirements and stresses, and the possibility of Ohmic ignition resulting from the majority of confining fields generated by internal plasma currents in the spheromak, are a few of the more prominent advantages that represent substantial improvement over conventional magnetic fusion reactor designs. Further, recent successes in improving confinement parameters (Te ~ 400eV, Ti ~ 1keV, ne ~ 3 × 1014cm-3, B ~ 1T) have renewed the interest in advancing this concept to a proof-of-principle, reactor prototype stage.
Here we extend the initial work by Fowler, et al. [Comments Plasma Phys. Controlled Fusion 16, 91 (1994)] indicating the possibility of Ohmic ignition in spheromaks, to a two fluid model that includes direct ion heating through turbulent Taylor relaxation mechanisms. The contribution to direct ion heating through this non-Ohmic magnetic dissipation, and confinement scaling are quantified through comparison with the latest results from the gun driven Compact Torus eXperiment (CTX) [Phys. Fluids B 2, 1342 (1990)] spheromak. We realize good agreement between experimentally measured plasma parameters and our model predictions. Extrapolation to an ignition class experiment is examined indicating the possibility of reaching these conditions by gun driven Ohmic heating alone, and illustrating the merits of direct ion heating on facilitating approach to ignition. Differences between classical (no direct ion heating) and direct ion heating cases are emphasized. Conservative confinement estimates are used throughout.