ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. M. Mayo
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1326-1331
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963132
Articles are hosted by Taylor and Francis Online.
As a member of the compact toroidal class of magnetic fusion devices, the spheromak [Nucl. Fusion 19, 489 (1979)] offers substantial advantage as a fusion reactor concept over larger, more complicated, and more costly re-entrant devices like the tokamak. The compact and simply closed geometry affording high energy density, the inherent diverted nature of the magnetic topology, the force free condition μ0j(r) = ƛ(ϕ)B(r) nature of the spheromak equilibrium minimizing external coil requirements and stresses, and the possibility of Ohmic ignition resulting from the majority of confining fields generated by internal plasma currents in the spheromak, are a few of the more prominent advantages that represent substantial improvement over conventional magnetic fusion reactor designs. Further, recent successes in improving confinement parameters (Te ~ 400eV, Ti ~ 1keV, ne ~ 3 × 1014cm-3, B ~ 1T) have renewed the interest in advancing this concept to a proof-of-principle, reactor prototype stage.
Here we extend the initial work by Fowler, et al. [Comments Plasma Phys. Controlled Fusion 16, 91 (1994)] indicating the possibility of Ohmic ignition in spheromaks, to a two fluid model that includes direct ion heating through turbulent Taylor relaxation mechanisms. The contribution to direct ion heating through this non-Ohmic magnetic dissipation, and confinement scaling are quantified through comparison with the latest results from the gun driven Compact Torus eXperiment (CTX) [Phys. Fluids B 2, 1342 (1990)] spheromak. We realize good agreement between experimentally measured plasma parameters and our model predictions. Extrapolation to an ignition class experiment is examined indicating the possibility of reaching these conditions by gun driven Ohmic heating alone, and illustrating the merits of direct ion heating on facilitating approach to ignition. Differences between classical (no direct ion heating) and direct ion heating cases are emphasized. Conservative confinement estimates are used throughout.