ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. C. Kirkpatrick, D. Palmer Smitherman
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1311-1314
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963129
Articles are hosted by Taylor and Francis Online.
Magnetized target fusion (MTF) promises to ease the power and intensity requirements for a fusion driver. High gain MTF targets require fusion ignition to occur in the magnetized fuel. Ignition requires the energy deposited by the charged fusion reaction products to exceed that lost from the plasma by a variety of loss mechanisms. We have used single particle tracking through a magnetized plasma to obtain preliminary results on the DT alpha particle deposition as a function of the plasma ρR and BR for a uniform spherically symmetric volume with a uniform Bθ magnetic field. More complicated plasma density, temperature, and field distributions can be handled by the code, including 2-D distributions, but the efficiency of this approach makes extensive calculations impractical. A more efficient approach is needed, particularly for use in dynamic calculations. However, particle tracking is useful for obtaining information for building more accurate models of the deposition for use in survey codes.