ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Farrokh Najmabadi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1286-1292
Power Plant Design and Technology | doi.org/10.13182/FST96-A11963125
Articles are hosted by Taylor and Francis Online.
The Starlite Project was initiated to investigate the mission, requirements and goals, features, and the R&D needs of the Fusion Demonstration Power Plant based on tokamak confinement concept. It is obvious that the Fusion Demo should demonstrate that a commercial fusion power plant would be accepted by utility and industry (i.e., it is affordable and profitable) and by the general public and government (i.e., it has superior safety and environmental features). Therefore, as the first step in the Starlite project, a set of quantifiable top-level requirements, and goals for both commercial fusion power plants and the Fusion Demo were developed. Next, several candidate options for physics operation regime as well engineering design of various components (e.g., choice of structural material, coolant, breeder) have been developed and assessed. In each area, this assessment was aimed at investigating (1) the potential to satisfy the requirements and goals, and (2) the feasibility e.g., critical issues and credibility (e.g., degree extrapolation required from present data base). This assessment led to the choice of the reversed-shear as the tokamak plasma operation regime and a self-cooled lithium design with vanadium alloy for blanket and in-vessel structures for detailed design. This paper presents a summary of top-level requirements and goals for fusion power and overviews the results of our assessment of tokamak plasma physics and technology options and designs.