ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Farrokh Najmabadi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1286-1292
Power Plant Design and Technology | doi.org/10.13182/FST96-A11963125
Articles are hosted by Taylor and Francis Online.
The Starlite Project was initiated to investigate the mission, requirements and goals, features, and the R&D needs of the Fusion Demonstration Power Plant based on tokamak confinement concept. It is obvious that the Fusion Demo should demonstrate that a commercial fusion power plant would be accepted by utility and industry (i.e., it is affordable and profitable) and by the general public and government (i.e., it has superior safety and environmental features). Therefore, as the first step in the Starlite project, a set of quantifiable top-level requirements, and goals for both commercial fusion power plants and the Fusion Demo were developed. Next, several candidate options for physics operation regime as well engineering design of various components (e.g., choice of structural material, coolant, breeder) have been developed and assessed. In each area, this assessment was aimed at investigating (1) the potential to satisfy the requirements and goals, and (2) the feasibility e.g., critical issues and credibility (e.g., degree extrapolation required from present data base). This assessment led to the choice of the reversed-shear as the tokamak plasma operation regime and a self-cooled lithium design with vanadium alloy for blanket and in-vessel structures for detailed design. This paper presents a summary of top-level requirements and goals for fusion power and overviews the results of our assessment of tokamak plasma physics and technology options and designs.