ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Robert T. Simmons, Walter B. Lindquist, Bruce Montgomery
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1271-1275
Steady-State and Long-Pulse Machine Studies | doi.org/10.13182/FST96-A11963123
Articles are hosted by Taylor and Francis Online.
In September, 1995, the Office of Fusion Energy commissioned a three month study to assess the recommendations made by President's Commission on the Advancement of Science and Technology (PCAST) for a reduced scope of the International Thermonuclear Experimental Reactor (ITER) mission. The PCAST suggested that a device, operating with a moderate pulse length and corresponding reduced mission for ignition and bum control, could be built at a significantly lower cost than the present ITER design. If such a machine were technically feasible and less expensive than ITER, PCAST reasoned that the U.S. could participate as a full partner in an international collaboration to build such a device.
The study's charter was to develop a design to meet the reduced mission and to compare its cost with ITER using “ITER Physics.” In addition, the study explored the cost and performance sensitivity to variations in design approach and physics performance. Finally, to better understand the cost of such a project in U.S. terms, the design example was also estimated in a U.S. Total Project Cost format.
This paper details the cost estimate approach in arriving at the cost of the PCAST machine. Since the project schedule or funding profile are yet to be established, the cost comparisons based on percentage basis to ITER were more appropriate than absolute dollar comparisons. In addition, the costs of this device were also compared to the Burning Plasma Experiment (BPX) - a short pulse ignition device designed in the early 1990's, and the Tokamak Physics Experiment (TPX) - a long pulse, advanced tokamak canceled recently by the Department of Energy (DOE) due to Congressional budget constraints. Comparisons were limited to construction costs since agreements between potential international partners on the PCAST machine could significantly impact the treatment of engineering/physics, R&D, and other costs such as construction management, engineering support during construction, and commissioning costs.
The construction costs of the PCAST device were estimated to be approximately $2,600M. This is approximately 45% of the ITER construction costs, approximately 330% of the BPX estimate, and approximately 685% of the TPX estimate. Due to budget and time constraints, cost scaling was used versus performing a “bottoms up” estimate. This approach involves considerable uncertainty. Additionally, there was also a range of costs associated with future design development. Both considerations were clearly a factor in the PCAST machine where there was relatively little time for detailed evaluation, design development, or optimization. Given these uncertainties, we believe it is most appropriate to describe the construction estimate for the PCAST machine as approximately 50% of the cost of ITER, with a range of 40% to 60%.
Using the U.S. Total Project Cost methodology, the total cost of the PCAST machine was estimated to be approximately $5.8 billion in FY-95 dollars, including contingency allowances.