ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
G. H. Neilson, D. B. Batchelor, M. D. Carter, J. D. Galambos, E. A. Lazarus, D. W. Swain, C. C. Tsai, N. A. Uckan, R. J. Goldston, C. E. Kessel, D. R. Mikkelsen, W. Reiersen, J. A. Schmidt, R. H. Bulmer, D. N. Hill, W. M. Nevins, P.-W. Wang
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1261-1265
Steady-State and Long-Pulse Machine Studies | doi.org/10.13182/FST96-A11963121
Articles are hosted by Taylor and Francis Online.
The physics capabilities of an ignition-and-moderate-burn tokamak to explore the physics of burning plasmas and bum control on ash accumulation time scales are described. The machine provides physics capabilities comparable to those of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths up to 120 s, but lacks the nuclear component testing, superconducting magnet technology, and long-pulse aspects of ITER's mission. Strong plasma shaping is adopted to reduce the cost relative to ITER. Using ITER guidelines to evaluate the physics performance, this machine has the same ignition margin as ITER's, and operates within the limits on beta, density (i.e., the Greenwald density limit), and safety-factor specified in the ITER physics guidelines. Acceptable peak heat fluxes to divertor target surfaces are maintained with an attached, high-recycling divertor operating scenario typical of present-day machines. A range of ignited and driven operating modes is available, including advanced modes prototypical of steady-state tokamak operation.