ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Takashi Kato, Kunihiro Matsui, Susumu Shimamoto, Kazuhiko Nishida, Tadaaki Honda, Kazuya Hamada, Hiroshi Tsuji, Neil Michel, Kiyoshi Yoshida
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1253-1257
Fusion Magnet Systems | doi.org/10.13182/FST96-A11963120
Articles are hosted by Taylor and Francis Online.
One of the safety analysis for superconducting magnet system in International Thermonuclear Experimental Reactor (ITER) was carried out. The ITER cryostat will hold many superconducting magnets, such as twenty of toroidal field coils, a central solenoid coil, and seven poloidal coils. Loss of vacuum of the cryostat was considered as the worst assumption and the safety analysis of the magnets was examined when the assumption would be occurred. Accordingly, the loss of vacuum will cause the loss of thermal shield vacuum for the magnets and then a large heat transfer will be generated in the cryostat The magnet pressure and temperature will rise, bringing the magnets to quench. Such behavior was simulated by using a developed computer-aided calculation code. As a result of the calculation, a catastrophic phenomenon doesn't appear in the assumption. It is observed that a quasi-stable state, where the magnet temperature is kept to be less than 7 K, is maintained for more than 600 seconds. Thus, the magnet current can be slowly discharged like as the ordinal operation without magnet quench even in such worst assumption due to a large volume of the cryostat.