ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Takashi Kato, Kunihiro Matsui, Susumu Shimamoto, Kazuhiko Nishida, Tadaaki Honda, Kazuya Hamada, Hiroshi Tsuji, Neil Michel, Kiyoshi Yoshida
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1253-1257
Fusion Magnet Systems | doi.org/10.13182/FST96-A11963120
Articles are hosted by Taylor and Francis Online.
One of the safety analysis for superconducting magnet system in International Thermonuclear Experimental Reactor (ITER) was carried out. The ITER cryostat will hold many superconducting magnets, such as twenty of toroidal field coils, a central solenoid coil, and seven poloidal coils. Loss of vacuum of the cryostat was considered as the worst assumption and the safety analysis of the magnets was examined when the assumption would be occurred. Accordingly, the loss of vacuum will cause the loss of thermal shield vacuum for the magnets and then a large heat transfer will be generated in the cryostat The magnet pressure and temperature will rise, bringing the magnets to quench. Such behavior was simulated by using a developed computer-aided calculation code. As a result of the calculation, a catastrophic phenomenon doesn't appear in the assumption. It is observed that a quasi-stable state, where the magnet temperature is kept to be less than 7 K, is maintained for more than 600 seconds. Thus, the magnet current can be slowly discharged like as the ordinal operation without magnet quench even in such worst assumption due to a large volume of the cryostat.