ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Anil Kumar, Yujiro Ikeda, Mahmoud Z. Youssef, Mohamed A. Abdou, Yoshitomo Uno, Hiroshi Maekawa
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1118-1128
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963099
Articles are hosted by Taylor and Francis Online.
The work reported herein was conducted in response to an ITER Task to demonstrate experimentally that pulsed and continuous operations of a D-T neutron source lead, in general, to differing impacts on inventory of induced radioactivity, on one hand, and to verify calculational methods, on the other. In a series of experiments conducted for the purpose, half lives of observed radioisotopes varied from 1 minute (25Na) to 271 days (57Co). Relatively short pulse lengths, 1 minute to 3 minute duration, were chosen. A pneumatic transport system was employed to transport foils of niobium, iron, aluminum. vanadium, nickel, and magnesium for irradiation close to the D-T neutron source. Three duty factors and two kinds of power levels were used for various neutron pulse trains.
The experimental data was processed to obtain ratio of inventories in pulsed to continuous operation scenarios for each of the observed radioisotope. We observe a large reduction in radioactive inventories for values of t1/2/p (half life/pulse duration) lying in the range of 1 to 10. Interestingly, random power pulse trains show even larger reduction in radioactive inventory: the ratio of inventories drops to ~0.14 for t1/2/p = 3.15 (27Mg) for a duty factor of 20% and a train of 10 pulses, whereas it would have hit a minimum of 0.33 for t1/2/p = 3.53 for constant power level.