ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Fujio Maekawa, Yujiro Ikeda, Yuriy M. Verzilov, Chikara Konno, Masayuki Wada, Hiroshi Maekawa, Yukio Oyama, Yoshitomo Uno
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1081-1087
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963094
Articles are hosted by Taylor and Francis Online.
To assess validity of the shielding design tools for ITER, the benchmark experiment on SS316/Water shield conducted at FNS/JAERI is analyzed. As far as a simple bulk shield of SS316/Water is concerned, the followings are found assuming that no uncertainty is involved in the response functions of the design parameters. Nuclear data bases of JENDL Fusion File and FENDL/E-1.0 are valid to predict all the design parameters with uncertainties less than a factor of 1.25. At the connection legs between shield blanket modules and back plates, both MCNP and DOT calculations can predict helium production rate with uncertainties less than 10 %. For the troidal field coils on the midplane, all the nuclear parameters can be predicted with uncertainties less than a factor of 1.25 by MCNP and DOT with consideration of self-shielding correction of cross sections and energy group structure of 125-n and 40-γ. The uncertainties for toroidal field coils are considerably smaller than the design margins secured to the shielding designs under ITER/EDA.