ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tadaaki Nemoto, Motoo Ishikawa, Yasuyoshi Yasaka
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 309-311
Field Reversed Configuration and Neutron Sources | doi.org/10.13182/FST03-A11963621
Articles are hosted by Taylor and Francis Online.
The separation capability of the charged particles is one of the most important requirements for direct energy converters (DEC) of D-3He fusion reactors. Yasaka, one of the authors, has demonstrated the principle of the Cusp DEC on a small-scale experimental device. Analyses of the device with a two-dimensional approximation and comparison with the experimental results give the following results. (1) The input power of plasma beam is estimated as P = 2W × E1.5, compared with the experimental results, where E is the ion energy and normalized with 0.1keV. (2) The current at point cusp tends to saturate as the ion energy increases as the experimental results show. (3) Ion current at point cusp depends on the shape of the magnetic field more strongly than its strength.