ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
M. Yoshida, T. Cho, M. Hirata, S. Nagashima, H. Ito, J. Kohagura, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 289-291
Diagnostics | doi.org/10.13182/FST03-A11963617
Articles are hosted by Taylor and Francis Online.
In tandem-mirror experiments, plasma-confining potentials produced by electron-cyclotron heatings (ECH) play one of the most critical roles in the improvement of simple-mirror plasma confinement. For the observations of spatially resolved ion spectrum distributions require ion-sensitive and reproducible rigid detector-array units from a practical viewpoint. These data are, in turn, physically of importance for plasma confinement investigations including potential effects on plasma confinement as well as transport analysis in relation to the potential profiles. From these motivations, the relation of spatial distributions of ion-confining potentials ɸc. and end-loss-ion fluxes IELA is investigated by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of GAMMA 10. Axisymmetric profiles of ɸc are found to have a good correlation with axisymmetric plugging distributions in IELA. These are consistently interpreted in terms of the Pastukhov theory of the relation between ɸc and IELA. For these axisymmetric plasmas, particle-balance calculations show ignorable radial-loss-ion fluxes I⊥ as compared to IELA. This result (i.e. IELA>>I⊥ is consistent with the assumption of the Pastukhov theory in which the axial particle loss alone is taken into account.