ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Yoshida, T. Cho, M. Hirata, S. Nagashima, H. Ito, J. Kohagura, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 289-291
Diagnostics | doi.org/10.13182/FST03-A11963617
Articles are hosted by Taylor and Francis Online.
In tandem-mirror experiments, plasma-confining potentials produced by electron-cyclotron heatings (ECH) play one of the most critical roles in the improvement of simple-mirror plasma confinement. For the observations of spatially resolved ion spectrum distributions require ion-sensitive and reproducible rigid detector-array units from a practical viewpoint. These data are, in turn, physically of importance for plasma confinement investigations including potential effects on plasma confinement as well as transport analysis in relation to the potential profiles. From these motivations, the relation of spatial distributions of ion-confining potentials ɸc. and end-loss-ion fluxes IELA is investigated by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of GAMMA 10. Axisymmetric profiles of ɸc are found to have a good correlation with axisymmetric plugging distributions in IELA. These are consistently interpreted in terms of the Pastukhov theory of the relation between ɸc and IELA. For these axisymmetric plasmas, particle-balance calculations show ignorable radial-loss-ion fluxes I⊥ as compared to IELA. This result (i.e. IELA>>I⊥ is consistent with the assumption of the Pastukhov theory in which the axial particle loss alone is taken into account.