ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. J. Yoo, H. L. Yang, M. Jung, T. Lho, D. C. Kim, B. J. Lee, J. S. Kim, G. H. Kim
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 286-288
Diagnostics | doi.org/10.13182/FST03-A11963616
Articles are hosted by Taylor and Francis Online.
Two types of neutral beam sources have been developed in order to measure plasma parameters on the Hanbit mirror device. The first source is a diagnostic neutral beam (DNB) which consists of a hydrogen neutral beam with a beam energy of 30 keV and a total beam current of ca. 1 A. The ion temperature profile can be determined by measuring directly the broadening of the Hα line emitted from hydrogen neutrals produced through the charge exchange recombination reaction with the DNB in the plasma. A fibre optic array detector, which works as an ideal notching filter, was developed to filter out the intense Hα line emitted from the cold hydrogen atoms in the plasma edge. The second source is a hyperthermal neutral beam (HNB) which consists of neutral particles with an energy of 1-100 eV. The HNB can be used to measure electron temperature and density profiles in the region between the core and the outer edge. This region cannot be covered either by Thomson scattering or by electrostatic probes. The feasibility of obtaining profiles of electron density and temperature by means of a helium HNB with a collisonal radiative equilibrium code has been performed.