ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Takemura, K. Ishii, A. Fueki, K. Hagisawa, A. Kojima, A. Itakura, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 283-285
Diagnostics | doi.org/10.13182/FST03-A11963615
Articles are hosted by Taylor and Francis Online.
In the tandem mirror GAMMA10, confining potential is formed at the plug region in order to decrease the loss region which exists in the velocity space of ion. Furthermore to increase the confining potential effectively, the electron which flows into the plug cell from the central cell is decreased by forming a potential dip (thermal barrier potential) between the central cell and the plug cell. The electrostatic potential at the inner mirror throat (IMT) of the plug/barrier cell may decrease and act as effective thermal barrier potential because of the effects of the strongest magnetic field and the anisotropy of ion temperature in the central cell. Simultaneous measurements of both the potential and the density in the IMT region are important to investigate the potential formation mechanism.