ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
University of Nebraska–Lincoln: Home of ANS’s newest student section
Following official confirmation in June at the American Nuclear Society’s 2025 Annual Conference, the University of Nebraska–Lincoln has kicked off its first year as the newest ANS student section.
T. Numakura, T. Cho, J. Kohagura, M. Hirata, R. Minami, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 222-224
Stability | doi.org/10.13182/FST03-A11963599
Articles are hosted by Taylor and Francis Online.
The effects of the thermal-barrier potentials ɸb on the central-cell electron energy confinement are theoretically and experimentally investigated in the GAMMA 10 tandem mirror. In particular, the scaling of the central-cell electron temperatures Te with “the central-cell electron-confining potentials” ɸb is studied on the basis of the electron energy-balance equation and the generalized Pastukhov theory. The obtained theoretical scaling of Te with ɸb is then compared with the experimentally observed relation between these two parameters. In GAMMA 10, the main tandem-mirror operations are characterized in terms of(i) a high-potential mode having kV-order plasma-confining potentials, and (ii) a hot-ion mode yielding fusion neutrons with 10-20 keV bulk-ion temperatures. In this report, the scaling of Te with ɸb covering over these two representative operational modes is investigated, since the scalings of Te or the dominant parameters which determine Te have been remained for a long time as an unresolved important issue for tandem-mirror plasmas. It is found that the data in the two representative operational modes of the high-potential and hot-ion modes in the GAMMA 10 tandem mirror are in good agreement with the theoretically derived scaling formula, though the heating-source parameter dependence in the electron energy-balance equation is quite different in the two modes.