ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 172-176
Transport and Confinement | doi.org/10.13182/FST03-A11963587
Articles are hosted by Taylor and Francis Online.
Experiments on plasma heating by a high power electron beam at the GOL-3 facility have shown, that ion temperature with a multiple mirror configuration of the magnetic field is much higher than for plasma heating in a simple solenoid. A new mechanism of fast collective heating of a plasma ions is suggested. The efficiency of the heating depends on local density of the beam electrons. In the corrugated magnetic field this creates a periodical longitudinal variation of plasma pressure during the beam injection. Then the pressure gradients result in plasma motion towards the midplane of each magnetic cell. Numerical simulations and special experiments demonstrate that fast thermalization of the energy of the directed plasma motion occurs. This mechanism requires about one ion-ion collision time that is much faster than usual electron-to-ion energy transfer time.