ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Saito, Y. Tatematsu, Y. Imaizumi, E. Tsuda, T. Yasuoka, M. Ichimura, K. Ishii, I. Katanuma, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 167-171
Transport and Confinement | doi.org/10.13182/FST03-A11963586
Articles are hosted by Taylor and Francis Online.
For understanding of the plug potential generation in a tandem mirror, the potential structure of the whole plasma should be investigated. In particular, the potential structure from the plug-barrier cell to the end plate installed on the end wall of the vacuum vessel has physical import. The fundamental ECRH at the plug region generates an electromotive force by driving the axial flow of electrons. This electromotive force is divided into the positive plug potential and the negative end plate potential. This paper shows the variations of these potential with currents flowing through each region. The end plate potential increases with this current. Analysis of a current carrying sheath is applied to the end plate potential. The plug potential decreases with a radial ion current in the peripheral region of the plug-barrier cell. To illustrate this point, a plasma shot with NBI is examined in which a trapped plasma is generated in the cell.