ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. K. Na, D. C. Seo, J.Y. Kim, S.G. Lee, J.G. Bak, B. C. Kim, W. C. Kim, M. Kwon, HANBIT project team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 162-166
Transport and Confinement | doi.org/10.13182/FST03-A11963585
Articles are hosted by Taylor and Francis Online.
The wall recycling effect dominantly appears in the ICRH discharge with ω < ωci in the HANBIT plasma. The methods and evaluation of wall conditioning are described. The progress of wall conditioning is monitored with neutral pressure and plasma parameters. Electron cyclotron resonance–discharge cleaning(ECR-DC) is applied to improve wall conditioning, and then electron impact desorption(EID) by filament heating is utilized in order to desorb the impurities from the wall. The impurities are analyzed quantitatively by quadrupole mass spectrometer(QMA). We also install new baking system by Halogen lamp radiation with 2 kW in the HANBIT central cell. It is also observed that Hα emission reduces after lamp heating. The evolution of neutral pressure profiles are carefully evaluated during discharge and monitored discharge cleaning effect after several hundred of radio frequency(rf) shots. The partial pressure of light impurities much reduced after rf discharges The line integrated density and edge density much decreased after rf shots, while edge temperature increases. After ECR-DC, also line density decreases, but edge temperature much increases. Plasma beta goes up more than three times after 250 rf shots.