ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. K. Na, D. C. Seo, J.Y. Kim, S.G. Lee, J.G. Bak, B. C. Kim, W. C. Kim, M. Kwon, HANBIT project team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 162-166
Transport and Confinement | doi.org/10.13182/FST03-A11963585
Articles are hosted by Taylor and Francis Online.
The wall recycling effect dominantly appears in the ICRH discharge with ω < ωci in the HANBIT plasma. The methods and evaluation of wall conditioning are described. The progress of wall conditioning is monitored with neutral pressure and plasma parameters. Electron cyclotron resonance–discharge cleaning(ECR-DC) is applied to improve wall conditioning, and then electron impact desorption(EID) by filament heating is utilized in order to desorb the impurities from the wall. The impurities are analyzed quantitatively by quadrupole mass spectrometer(QMA). We also install new baking system by Halogen lamp radiation with 2 kW in the HANBIT central cell. It is also observed that Hα emission reduces after lamp heating. The evolution of neutral pressure profiles are carefully evaluated during discharge and monitored discharge cleaning effect after several hundred of radio frequency(rf) shots. The partial pressure of light impurities much reduced after rf discharges The line integrated density and edge density much decreased after rf shots, while edge temperature increases. After ECR-DC, also line density decreases, but edge temperature much increases. Plasma beta goes up more than three times after 250 rf shots.