ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. K. Na, D. C. Seo, J.Y. Kim, S.G. Lee, J.G. Bak, B. C. Kim, W. C. Kim, M. Kwon, HANBIT project team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 162-166
Transport and Confinement | doi.org/10.13182/FST03-A11963585
Articles are hosted by Taylor and Francis Online.
The wall recycling effect dominantly appears in the ICRH discharge with ω < ωci in the HANBIT plasma. The methods and evaluation of wall conditioning are described. The progress of wall conditioning is monitored with neutral pressure and plasma parameters. Electron cyclotron resonance–discharge cleaning(ECR-DC) is applied to improve wall conditioning, and then electron impact desorption(EID) by filament heating is utilized in order to desorb the impurities from the wall. The impurities are analyzed quantitatively by quadrupole mass spectrometer(QMA). We also install new baking system by Halogen lamp radiation with 2 kW in the HANBIT central cell. It is also observed that Hα emission reduces after lamp heating. The evolution of neutral pressure profiles are carefully evaluated during discharge and monitored discharge cleaning effect after several hundred of radio frequency(rf) shots. The partial pressure of light impurities much reduced after rf discharges The line integrated density and edge density much decreased after rf shots, while edge temperature increases. After ECR-DC, also line density decreases, but edge temperature much increases. Plasma beta goes up more than three times after 250 rf shots.