ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Inutake, A. Ando, K. Hattori, T. Yagai, H. Tobari, Y. Kumagai, H. Miyazaki, S. Fujimura
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 118-124
Propulsion | doi.org/10.13182/FST03-A11963577
Articles are hosted by Taylor and Francis Online.
A supersonic plasma is produced quasi-steadily by use of a magneto-plasma-dynamic arcjet (MPDA) in various shapes of an external magnetic field configuration. An ion acoustic Mach number Mi of the plasma flow is limited to be nearly unity in a uniform magnetic field configuration, while it increases up to almost 3 in a divergent magnetic nozzle configuration. Spatial variations of Mi is well predicted by an isentropic model for a compressible gas. The Mach number decreases in the far downstream region due to charge-exchange collisions between flowing ions and neutral atoms which are produced through surface-recombination on the end wall. Ion heating of the fast flowing plasma has been successfully demonstrated for the first time. This success is mainly due to the plasma density is high enough to reduce the penetration of neutral gases which cause the charge-exchange energy loss. It is found that an asymmetric RF wave with an azimuthal mode number m= ± 1 is most effective to heat the ions.