ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
M. Inutake, A. Ando, K. Hattori, T. Yagai, H. Tobari, Y. Kumagai, H. Miyazaki, S. Fujimura
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 118-124
Propulsion | doi.org/10.13182/FST03-A11963577
Articles are hosted by Taylor and Francis Online.
A supersonic plasma is produced quasi-steadily by use of a magneto-plasma-dynamic arcjet (MPDA) in various shapes of an external magnetic field configuration. An ion acoustic Mach number Mi of the plasma flow is limited to be nearly unity in a uniform magnetic field configuration, while it increases up to almost 3 in a divergent magnetic nozzle configuration. Spatial variations of Mi is well predicted by an isentropic model for a compressible gas. The Mach number decreases in the far downstream region due to charge-exchange collisions between flowing ions and neutral atoms which are produced through surface-recombination on the end wall. Ion heating of the fast flowing plasma has been successfully demonstrated for the first time. This success is mainly due to the plasma density is high enough to reduce the penetration of neutral gases which cause the charge-exchange energy loss. It is found that an asymmetric RF wave with an azimuthal mode number m= ± 1 is most effective to heat the ions.