ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
J.P. Squire, F.R. Chang Díaz, T.W. Glover, V.T. Jacobson, D.G. Chavers, R.D. Bengtson, E.A. Bering, III, R.W. Boswell, R.H. Goulding, M. Light
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 111-117
Propulsion | doi.org/10.13182/FST03-A11963576
Articles are hosted by Taylor and Francis Online.
The Advanced Space Propulsion Laboratory (ASPL) of NASA's Johnson Space Center is performing research on a Variable Specific Impulse MagnetoPlasma Rocket (VASIMR). The VASIMR is a high power, radio frequency (RF) driven magnetoplasma rocket, capable of very high exhaust velocities, > 100 km/s. A NASA-led research team involving industry, academia and government facilities is pursuing the development of this concept in the United States. The ASPL's experimental research focuses on three major areas: helicon plasma production, ion cyclotron resonant frequency (ICRF) acceleration and plasma expansion in a magnetic nozzle. The VASIMR experiment (VX-10) performs experimental research that demonstrates the thruster concept at a total RF power on the order of 10 kW. A flexible four-magnet system, with a 1.3 Tesla maximum magnetic field strength, allows axial magnetic field profile shape effects to be studied. Power generated at 10 – 50 MHz with about 3 kW is used to perform helicon plasma source development. A 3 MHz RF transmitter capable of 100 kW is available for ICRF experiments. The primary diagnostics are: gas mass flow controllers, RF input power, Langmuir probes, Mach probe, retarding potential analyzers (RPA), microwave interferometer, neutral pressure measurements and plasma light emission. In addition, many thermocouples are attached inside the vacuum chamber to measure heat loads around the plasma discharge.
Helicon research has been done with hydrogen, deuterium, helium, nitrogen, argon, xenon and mixtures of these gases. Optimization studies have been performed with the magnetic field axial profile shape, antenna geometry, gas flow rate, gas tube geometry and RF frequency. ICRF experiments have begun, primarily using a high density (> 1018/m3) helium helicon discharge as a target. Over 6 kW of power has been applied using a simple antenna array. The latest results of helicon and ICRF experiments will be presented.