ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A. C. England, M. Kwon, J. S. Hong, Y. S. Jung, S. G. Lee, J. G. Bak, W. H. Ko, M. C. Kyeum, D. K. Lee, Hanbit Team, W. Y. Kim, W. I. Seo, K. H. Chu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 73-77
Heating | doi.org/10.13182/FST03-A11963566
Articles are hosted by Taylor and Francis Online.
Hot electrons have been created in the plug section of the Hanbit tandem mirror in order to allow a test of high-in ballooning stability provided by a high-β hot-electron plasma in a tandem mirror. A rectangular microwave cavity was built to confine the energy from a 2-kW 14-GHz klystron. The cavity was equipped with a diamagnetic loop, a skimmer probe, and bremsstrahlung windows. An end-loss probe has been added in the cusp section in order to study the hot-electron mirror losses from the plug. The end-loss probe contains a Silicon PIN diode that is used to detect the x-rays from fast electrons striking a tantalum radiator. The end-loss probe was scanned radially to determine the radius and radial width of the hot-electron distribution ring for two different magnetic fields. A clear ring is observed for both magnetic fields. Bremsstrahlung measurements have shown the presence of a hot-electron plasma in the plug with an electron temperature in the range of 60 to 120 keV. The temperature with the optimum magnetic field is ~ 100 keV. Diamagnetic measurements give the total stored energy. Stored-energy measurements combined with the radial dimensions determined by the end-loss detector were used to give the value of beta with assumptions on the plasma length. The average beta value is much less than 1% due to the low power and short heating time.