ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
A. C. England, M. Kwon, J. S. Hong, Y. S. Jung, S. G. Lee, J. G. Bak, W. H. Ko, M. C. Kyeum, D. K. Lee, Hanbit Team, W. Y. Kim, W. I. Seo, K. H. Chu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 73-77
Heating | doi.org/10.13182/FST03-A11963566
Articles are hosted by Taylor and Francis Online.
Hot electrons have been created in the plug section of the Hanbit tandem mirror in order to allow a test of high-in ballooning stability provided by a high-β hot-electron plasma in a tandem mirror. A rectangular microwave cavity was built to confine the energy from a 2-kW 14-GHz klystron. The cavity was equipped with a diamagnetic loop, a skimmer probe, and bremsstrahlung windows. An end-loss probe has been added in the cusp section in order to study the hot-electron mirror losses from the plug. The end-loss probe contains a Silicon PIN diode that is used to detect the x-rays from fast electrons striking a tantalum radiator. The end-loss probe was scanned radially to determine the radius and radial width of the hot-electron distribution ring for two different magnetic fields. A clear ring is observed for both magnetic fields. Bremsstrahlung measurements have shown the presence of a hot-electron plasma in the plug with an electron temperature in the range of 60 to 120 keV. The temperature with the optimum magnetic field is ~ 100 keV. Diamagnetic measurements give the total stored energy. Stored-energy measurements combined with the radial dimensions determined by the end-loss detector were used to give the value of beta with assumptions on the plasma length. The average beta value is much less than 1% due to the low power and short heating time.