ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Ichimura, H. Higaki, S. Saosaki, S. Kakimoto, Y. Yamaguchi, K. Horinouchi, H. Hojo, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 69-72
Heating | doi.org/10.13182/FST03-A11963565
Articles are hosted by Taylor and Francis Online.
Three ICRF sources (RF1, RF2 and RF3) are used for the plasma production and heating in the GAMMA 10 tandem mirror. The initial plasma in a standard mode of operation is produced by using RF1 and RF2 with near fundamental ion cyclotron frequencies. Under the present experimental conditions, an eigenmode which has a fundamental radial structure is only excited and the density is clamped so as to satisfy the boundary conditions in the axial direction. When RF3 with a frequency range of high harmonic fast waves is applied, several eigenmodes with different radial structures can be excited and the density clamping is released. Two different frequencies are used in the RF3 system; one is 63 MHz which corresponds to the 10th harmonic ion cyclotron frequency near the midplane of the central cell and the other is 41.5 MHz. The density increase due to the excitation of the high harmonic fast waves are observed in both cases. It is observed the high energy ions are produced due to the higher harmonic resonance.