ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Ichimura, H. Higaki, S. Saosaki, S. Kakimoto, Y. Yamaguchi, K. Horinouchi, H. Hojo, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 69-72
Heating | doi.org/10.13182/FST03-A11963565
Articles are hosted by Taylor and Francis Online.
Three ICRF sources (RF1, RF2 and RF3) are used for the plasma production and heating in the GAMMA 10 tandem mirror. The initial plasma in a standard mode of operation is produced by using RF1 and RF2 with near fundamental ion cyclotron frequencies. Under the present experimental conditions, an eigenmode which has a fundamental radial structure is only excited and the density is clamped so as to satisfy the boundary conditions in the axial direction. When RF3 with a frequency range of high harmonic fast waves is applied, several eigenmodes with different radial structures can be excited and the density clamping is released. Two different frequencies are used in the RF3 system; one is 63 MHz which corresponds to the 10th harmonic ion cyclotron frequency near the midplane of the central cell and the other is 41.5 MHz. The density increase due to the excitation of the high harmonic fast waves are observed in both cases. It is observed the high energy ions are produced due to the higher harmonic resonance.