ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T.D. Akhmetov, V.S. Belkin, I.O. Bespamyatnov, V.I. Davydenko, G.I. Dimov, Yu.V. Kovalenko, A.S. Krivenko, P.A. Potashov, V.V. Razorenov, V.B. Reva, V. Ya. Savkin, G.I. Shulzhenko
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 58-62
Overview | doi.org/10.13182/FST03-A11963563
Articles are hosted by Taylor and Francis Online.
At present the axisymmetric ambipolar mirror trap AMBAL-M consists of a central solenoid which is attached to a plugging and MHD stabilizing end system and is filled from the other end by a plasma stream generated by a gas-discharge source. In the first experiments we obtained the plasma in the solenoid with ~0.4 m diameter, density ~6·1012cm−3, electron temperature ~50 eV, and ion energy ~250 eV. In order to enhance the plasma flow from the source into the solenoid, the distance between the entrance throat of the solenoid and the plasma source was gradually decreased, and the plasma density was increased to ~2·1013 cm−3. Installation of a second source from the opposite end of the machine allowed us to increase the plasma density up to ~2.5·1013 cm−3 in the solenoid and up to ~1.5·1013 cm−3 in the mirror trap of the end system. For better propagation of the plasma stream from the second source into the trap the coil of the MHD-stabilizer semicusp was switched in the same direction as all other coils, thus the magnetic configuration consisted of a series of simple mirrors. However, the plasma remained MHD stable owing to its line-tying to conducting ends. When this line-tying broke during the fast cut-off of the source current, the density profile in the solenoid abruptly rearranged pointing to possible MHD activity, and independently of the initial shape it became almost flat up to the limiter.
Further enhancement of the plasma density was achieved using hydrogen puffing into the solenoid plasma while only the first source was functioning. Two methods of gas puffing were used – through a ceramic tube to the solenoid axis and into a gas-box surrounding the plasma. Optimization of the hydrogen puffing rate led to the density increase up to ~ 6·1013 cm−3 without noticeable degradation of the ion temperature which remained at a high level of ~200 eV (the ratio of the plasma pressure to the magnetic field pressure β~0.1), which is provided by stochastic ion heating from electrostatic oscillations when the source is working. The obtained solenoid plasma density is the highest one achieved in ambipolar mirror traps.