ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A.A. Ivanov, G.F. Abdrashitov, A.V. Anikeev, P.A. Bagryansky, P.P. Deichuli, A.N. Karpushov, S.A. Korepanov, A.A. Lizunov, V.V. Maximov, S.V. Murakhtin, A. Yu. Smirnov, A.A. Zouev, K. Noack, G. Otto
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 51-57
Overview | doi.org/10.13182/FST03-A11963562
Articles are hosted by Taylor and Francis Online.
GDT experiments of significance to a GDT-based neutron source development are reported in the areas of generation of axially peaked neutron flux profile, stable confinement with on-axis plasma beta ~ 40%, and radial electric field control. Skew injection of 4MW 15-17keV deuterium neutral beams into central cell resulted in generation of strongly peaked axial profile of neutron flux density. This can be described by a model of fast ion relaxation, which involves only classical mechanisms of electron drag and binary ion-ion collisions. Experiments with the radial limiter biasing show that the plasma density profile and radial losses respond to the electric filed profile. An increase of plasma energy was achieved with increased magnetic field in the central cell and optimized radial profile of electric field in the plasma. In these regimes of improved target plasma confinement, the on-axis plasma beta near the turning points of fast deuterons exceeded, as above mentioned, ~40%. The plans for future upgrade of the GDT device are discussed. It suggests considerable increase of NB injected power (up to 10MW) and extension of the pulse duration from 1ms to 3-5ms. After the upgrade, a significant increase of the electron temperature to 250-300eV could be obtained. Properties of the plasma with the parameters approaching those in the full-scale neutron source are planned to study in experiments with NB injection into additional cell near the end mirror.