ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Kwon, J. G. Bak, K. Choh, J. H. Choi, J. W. Choi, A. C. England, K. Hagisawa, J. S. Hong, S. J. Jeon, H. G. Jhang, Y. S. Jung, B. C. Kim, J. Y. Kim, S. S. Kim, W. H. Ko, M. C. Kyum, S. G. Lee, T. Lho, H. K. Na, B. H. Park, D. C. Seo, H. L. Yang, J. H. Yeom, S. J. Yoo, Hanbit Team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 23-29
Overview | doi.org/10.13182/FST03-A11963558
Articles are hosted by Taylor and Francis Online.
The HANBIT device is a non axi-symmetric mirror being operated as a national users’ facility. Plasmas are routinely produced by ICRF at 3.5 MHz with a slot antenna with gas puffing and the line-integrated densities are in the range between 2×1012 and 1×1014 cm–2. The pulse length is normally 250 msec, but higher wall recycling happened usually after 100 msec into the discharge. Characterization and application of various methods of wall conditioning have been performed. Ion heating had been tried by RF with a double half-turn antenna, however, the heating effects were vaguely seen. Optimum heating schemes have been actively pursued with different heating method and antenna types. RF-induced electric fields have been known to affect the plasma stability. This effect of RF on stability seems important in HANBIT because of lacking of stabilizing mechanisms such as the minimum-B effect and the line-tying effect. In addition, stabilization by a hot electron ring generation and by other methods is being pursued. Detailed experimental results on these topics will be presented.