ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
André L. Rogister
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 251-267
Transport and Instabilities | doi.org/10.13182/FST02-A11963524
Articles are hosted by Taylor and Francis Online.
Energy and particle transport rates in magnetically confined plasmas are often larger than neo-classical transport owing to binary collisions would allow. Anomalous transport, a major road block on the path to an economic fusion reactor, is a consequence of electric and magnetic fluctuations driven to supra thermal levels by various instability mechanisms. The linearly excited modes saturate by inducing a relaxation of the equilibrium profiles towards the marginally stable state, on the one hand, and via various non-linear interaction mechanisms, on the other hand. Specific instabilities, profile relaxation and non-linear interaction models are described and their successes and drawbacks are analysed in the light of observed characteristics of plasma confinement. A rough evaluation of the nuclear heating power required to balance the anomalous losses in the International Tokamak Experimental Reactor (ITER) is derived on the basis of the very qualitative mixing length estimate applied to electrostatic drift wave turbulence. Results from large-scale gyro-kinetic simulation codes are discussed.