ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Karl H. Spatschek
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 119-134
Kinetic Theory | doi.org/10.13182/FST02-A11963509
Articles are hosted by Taylor and Francis Online.
The statistical description of a hot, magnetized, classical plasma is reviewed. The latter represents the appropriate model for a fusion plasma in magnetic confinement. Various approaches are presented. We start with the Fokker-Planck equation for Langevin dynamics. It is shown that also a deterministic model leads to characteristic non-equilibrium behaviors in the so called kinetic regime. The Boltzmann equation for dilute gases is presented, and the differences between the kinetic and the hydrodynamic regimes are worked out. In the main part, the consequences of long-range Coulomb interactions are demonstrated. Several plasma-kinetic equations, like for instance the Balescu-Lenard equation, are discussed. Physical consequences from the linearization of the kinetic equations, e.g. collision frequencies and Landau damping, are elucidated. In the final part of the paper the specific reformulations in magnetized plasmas are investigated. The drift-kinetic and the gyrokinetic approaches are presented. The paper is concluded by an outlook on often used truncations.