ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Kunihiko Chiba, Toshiaki Yoneoka, Satoru Tanaka
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1038-1042
Safety and Environment | doi.org/10.13182/FST01-A11963380
Articles are hosted by Taylor and Francis Online.
Adsorption and desorption of D2O or H2O, as a simulator of HTO, on iron surface covered with thin iron oxide film were studied by thermal desorption (TD), electron stimulated desorption (ESD), photon stimulated desorption (PSD), X-ray photoemission spectroscopy (XPS), and scanning electron microscopy (SEM). When the iron was heated under constant heating rate (5K/min), adsorbed D2O was desorbed around 400K and 600K. Adsorbed D2O which could not be desorbed by heating to 773K could be desorbed by irradiation with photon or bombardment with electron.