ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ryouji Hiwatari, Seiji Mori
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1018-1022
Safety and Environment | doi.org/10.13182/FST01-A11963376
Articles are hosted by Taylor and Francis Online.
Radioactive waste generated from the CREST reactor has been evaluated. Activation of blankets and shields used during a plant lifetime was evaluated by an activation calculation code taking into accounts of the distribution of neutron wall loading and the scenario of blanket replacement. Limits on surface dose limits define the feasibility of recycling by remote handling (RHR) and by hands-on operation (HOR). After 50 years for decay of activated components, surface dose rate of most of components exceeds 10 mSv/h and cannot be recycled. Some of shields are lower than 10 mSv/h and have a possibility of RHR. After 100 years, surface dose rate of all components is lower than 3 mSv/h, and RHR is feasible. Half of shields are lower than 0.01 mSv/h and have a possibility of HOR. After 125 years, dose rate of all components is lower than 1 mSv/h. RHR with a relatively simple shielding precaution may be feasible. In the cases of 150 years or later, little degradation of dose rate can be expected. Therefore, the used components should be managed within approximately 125 years by suitable methods.