ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. Sanz, O. Cabellos, P. Yuste, S. Reyes, J.F. Latkowski
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 996-1002
Safety and Environment | doi.org/10.13182/FST01-A11963372
Articles are hosted by Taylor and Francis Online.
Inertial confinement fusion (ICF) devices, both test/experimental facilities and fusion energy (IFE) power plants, will operate in a pulsed mode. However, the pulsing schedule in these devices is very different, and it could range from one shot every several days in an experimental facility to some Hz in IFE reactors. The main objective of the present work is to determine whether or not a continuous-pulsed (CP) approach could be an accurate and practical methodology in modeling the pulsed activation experienced by chamber materials of both types of devices. In testing the applicability of the CP irradiation model, we used materials and neutron environment scenarios of the HYLIFE-II reactor and the NIF experimental facility. It is demonstrated that a CP approach consisting of a continuous irradiation period followed by a series of only a few pulses prior to shutdown, can efficiently model the real pulsed operating regimes of the chamber materials, in terms of both accuracy and CPU time consumption. Pros and cons of the model when compared with an equivalent steady-state (ESS) method are discussed, and comparison with the exact pulsed (EP) modeling is also performed.