ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Reyes, J. F. Latkowski, J. Gomez del Rio, J. Sanz
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 946-950
Safety and Environment | doi.org/10.13182/FST01-A11963362
Articles are hosted by Taylor and Francis Online.
The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li2BeF4) was lost at the beginning of the transient. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that this dose was dominated by the tritium released during the accident.
In order to further advance a complete safety analysis for HYLIFE-II, a range of other accident scenarios must be considered. In this work, we introduce a new version of the MELCOR thermal-hydraulics code recently developed by the Idaho National Engineering and Environmental Laboratory (INEEL) that uses flibe as the working fluid. We have focused on a loss of flow accident (LOFA), with simultaneous failure of the blanket structure and the beam tubes that connect the chamber with the outside of the confinement building. This constitutes the bypass needed to communicate the target chamber with the environment. Once the release fractions of the various radioactivity sources are known, we calculate off-site doses under different conditions as a consequence of the accident.