ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Reyes, J. F. Latkowski, J. Gomez del Rio, J. Sanz
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 946-950
Safety and Environment | doi.org/10.13182/FST01-A11963362
Articles are hosted by Taylor and Francis Online.
The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li2BeF4) was lost at the beginning of the transient. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that this dose was dominated by the tritium released during the accident.
In order to further advance a complete safety analysis for HYLIFE-II, a range of other accident scenarios must be considered. In this work, we introduce a new version of the MELCOR thermal-hydraulics code recently developed by the Idaho National Engineering and Environmental Laboratory (INEEL) that uses flibe as the working fluid. We have focused on a loss of flow accident (LOFA), with simultaneous failure of the blanket structure and the beam tubes that connect the chamber with the outside of the confinement building. This constitutes the bypass needed to communicate the target chamber with the environment. Once the release fractions of the various radioactivity sources are known, we calculate off-site doses under different conditions as a consequence of the accident.