ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M.E. Friend, C.B. Baxi, S. Ishida, G. Kurita, E.E. Reis, A. Sakasai, W.P. West
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 923-929
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963358
Articles are hosted by Taylor and Francis Online.
General Atomics recently completed a divertor design study for JAERI for the JT-60 Super Upgrade (JT-60SU) tokamak. JT-60SU is being designed as a superconducting device for an integrated R&D investigation of steady-state operation in a tokamak. A divertor design was developed to accommodate double-null operation for a 1000 s discharge duration at 8 MA of plasma current and 80 MW of auxiliary heating. The work reported here is an extension of a previous design study.1,2 The thermal requirements are a peak heat flux of 9 MW/m2, a maximum surface temperature of 1600°C, and a poloidal cooling flow configuration for the plasma facing components. The structural requirements are determined from both the predicted stresses due to halo currents as well as the stresses due to differential thermal expansion encountered during bakeout. The halo current loads are based on a nominal halo current of 0.19 Ip with a 2.0 toroidal peaking factor. Analysis has determined that the halo current load per centimeter of circumference is P = 2856 (1+cosθ) N/cm, where θ is the toroidal angle. The loads due to differential thermal expansion are a result of an expected 100°C temperature difference between the vacuum vessel and divertor during bakeout.
Based on the aforementioned criteria, a divertor design was developed for all three areas of the JT-60SU divertor: the inner baffle, the private flux baffle, and the outer baffle. In order to have highly reliable divertor components, flexible supports sized to accommodate the structural loads are utilized in the design rather than insulators or sliding interfaces. The plasma facing components are mounted on a structural mounting plate to form a removable and remotely-maintainable segment which is in turn mounted on the supports. For outer and private flux baffles, these structural mounting plates are joined together using a double shear joint design to form a structurally continuous ring to react the halo current loads. The plasma facing components are broken into 8° segmentation; however, the outer and private flux baffles have an alternating 8° and 16° structural segmentation which forms the double shear toroidal structural joint. The inner baffle takes advantage of its relatively short poloidal length and its proximity to the vacuum vessel to provide structural integrity. The thermal design consists of a plasma facing material of flat CFC tiles that are brazed onto a poloidally cooled copper heat sink. Adequate gaps between the baffles and wall are provided for pumping of recycled gas.