ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
T.W. Petrie, M.E. Fenstermacher, C.J. Lasnier
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 916-922
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963357
Articles are hosted by Taylor and Francis Online.
Advanced tokamaks use D-shaped cross-section plasmas to optimize fusion performance. In turn, the divertor (which handles heat and particles) must operate efficiently in these shaped plasmas. In this paper, we report on recent experiments at the DIII–D National Fusion Facility that compare the advantages/disadvantages of 1) double-null (DN) versus single-null (SN) configurations, 2) particle pumping at low and high density, and 3) open versus tightly baffled divertors. The focus of this paper will be on the important engineering consequences of these physics results for future tokamak designs. Accurate control over the magnetic balance is required by the plasma shaping coils for DN (and near-DN) operation because of the strong sensitivity of the heat flux to small changes in magnetic balance. Alternatively, additional protective armor may be needed for each divertor. We show that precise control over the strike point location by the coil system is important for lower density (attached) plasma operation, but much less so for higher density (detached) operation. We also find that minimizing the angle between the divertor structure and the divertor plasma legs is very useful in reducing the peak divertor heat flux for lower density (attached) plasmas but is of limited benefit for higher density (detached) plasmas. Finally, the physics results imply that significant heating and damage at the divertor “slot” opening may occur, even if several heat flux scrape-off lengths are allowed for clearance.