ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C.C. Klepper, J. Niemel, R.C. Hazelton, E.J. Yadlowsky, O.R. Monteiro
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 910-915
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963356
Articles are hosted by Taylor and Francis Online.
Boron carbide is an ideal coating for radio-frequency antennas in magnetic fusion energy, due to a combination of desirable properties: high hardness at high temperature, high melting point, low Z and high thermal conductivity. In this paper, the feasibility of using vacuum arc technology for coating antennas and other magnetic fusion energy plasma facing components is explored. This technique has the potential of producing much denser film than plasma spray and substantially higher deposition rates than magnetron sputtering. In addition, the use of hyper-thermal species may result in the formation of high thermal conductivity crystalline phase at lower deposition temperatures than would otherwise be expected. Finally, the compatibility of the vacuum arc with ultra-high vacuum conditions raises the possibility of in situ repair of components in a fusion reactor. Initial deposition studies are presented, which produced primarily amorphous film, but with the correct stoichiometry and a high deposition rate (>10nm/s). The properties of this film are presented in this paper. Some of the properties of the vacuum arc discharge, the first to be operated successfully with a sintered boron carbide cathode, are also presented.