ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C.C. Klepper, J. Niemel, R.C. Hazelton, E.J. Yadlowsky, O.R. Monteiro
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 910-915
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963356
Articles are hosted by Taylor and Francis Online.
Boron carbide is an ideal coating for radio-frequency antennas in magnetic fusion energy, due to a combination of desirable properties: high hardness at high temperature, high melting point, low Z and high thermal conductivity. In this paper, the feasibility of using vacuum arc technology for coating antennas and other magnetic fusion energy plasma facing components is explored. This technique has the potential of producing much denser film than plasma spray and substantially higher deposition rates than magnetron sputtering. In addition, the use of hyper-thermal species may result in the formation of high thermal conductivity crystalline phase at lower deposition temperatures than would otherwise be expected. Finally, the compatibility of the vacuum arc with ultra-high vacuum conditions raises the possibility of in situ repair of components in a fusion reactor. Initial deposition studies are presented, which produced primarily amorphous film, but with the correct stoichiometry and a high deposition rate (>10nm/s). The properties of this film are presented in this paper. Some of the properties of the vacuum arc discharge, the first to be operated successfully with a sintered boron carbide cathode, are also presented.