ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Koichiro Ezato, Satoshi Suzuki, Kazuyoshi Sato, Masaki Taniguchi, Masato Akiba
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 885-889
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963351
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) tests on a new type of rectangular cooling tube, “a saw-toothed fin duct (SFD)” for high heat flux components, were performed under one-sided heating conditions. This tube has internal triangular fins at the heating side to enhance the CHF characteristics. The saw-toothed fin duct, which has a fin height of 3.46 mm and an installation angle of the fin of 70 deg, results in the highest CHF of 43 MW/m2 at the axial flow velocity of 10 m/sec. It was found that this value is 1.3 times higher than that of a rectangular fined tube, so-called hypervapotron. Finite element analyses on the saw-toothed fin duct were also performed to examine its thermomechanical behavior under high heat flux conditions. The results show the maximum strain amplitude in the fin bases are ranged less than 0.05% under the heat flux of 20MW/m2. From this result, the fatigue lifetime of the fin bases is estimated to be more than 106 cycles.