ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
S. Sharafat, M. Demetriou, N. Ghoniem, B. Williams, R. Nygren
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 863-867
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963347
Articles are hosted by Taylor and Francis Online.
A novel concept for drastically improving the surface heat load capability of helium-cooled tungsten-alloy tubes is being developed for plasma facing components. The concept utilizes ultra-low density (90% porosity) W-foam, which is chemical-vapor-deposited inside a W-tube. The W-foam enhances the effective heat transfer coefficient inside the tube by significantly increasing the conduction path from the wall to the coolant fluid. A mockup of the W-tube/W-foam system has been constructed for testing at the helium loop and electron beam facility at Sandia National Laboratories, Albuquerque, NM. A finite element model (FEM) was constructed based on a 3-D solid model of the test section. The enhanced heat transfer coefficient was determined based on fundamental heat transfer principles through porous media. The porous tungsten heat exchanger tube exhibits a 3 fold improved surface heat load capability relative to a plain W-tube at temperatures above 1200°C.