ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Theron D. Marshall, Dennis L. Youchison, Lee C. Cadwallader
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 849-855
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963345
Articles are hosted by Taylor and Francis Online.
A conclusive safety assessment of a fusion reactor requires that the thermal response of the divertor assembly is known with a high degree of accuracy. Such accuracy is mandated because the divertor assembly is subjected to the highest levels of incident heat flux within the reactor. In order to accurately predict the thermal response of the divertor's cooling channels, it is necessary to have a complete model of the Nukiyama boiling curve for the water conditions of interest. Currently published models of the Nukiyama curve for fusion divertor channels have only included the regimes of forced convection, partially and fully developed nucleate boiling, and the local CHF. This paper presents a model that includes these pre-CHF regimes and the post-CHF regime of transition boiling. The model is unique because (1) it tightly integrates the respective heat transfer correlations and makes heat transfer predictions for the water conditions and incident heat fluxes that are fusion-specific, (2) predicts post-CHF heat transfer properties for a swirl tape divertor channel, and (3) validates its predictions via comparison with experimental data. Based on these three points, this model is considered as one of the best available methods for predicting the Nukiyama curve for a water-cooled fusion device.