ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Theron D. Marshall, Dennis L. Youchison, Lee C. Cadwallader
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 849-855
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963345
Articles are hosted by Taylor and Francis Online.
A conclusive safety assessment of a fusion reactor requires that the thermal response of the divertor assembly is known with a high degree of accuracy. Such accuracy is mandated because the divertor assembly is subjected to the highest levels of incident heat flux within the reactor. In order to accurately predict the thermal response of the divertor's cooling channels, it is necessary to have a complete model of the Nukiyama boiling curve for the water conditions of interest. Currently published models of the Nukiyama curve for fusion divertor channels have only included the regimes of forced convection, partially and fully developed nucleate boiling, and the local CHF. This paper presents a model that includes these pre-CHF regimes and the post-CHF regime of transition boiling. The model is unique because (1) it tightly integrates the respective heat transfer correlations and makes heat transfer predictions for the water conditions and incident heat fluxes that are fusion-specific, (2) predicts post-CHF heat transfer properties for a swirl tape divertor channel, and (3) validates its predictions via comparison with experimental data. Based on these three points, this model is considered as one of the best available methods for predicting the Nukiyama curve for a water-cooled fusion device.