ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M.H. Anderson, J.G. Murphy, M.E. Sawan, I.N. Sviatoslavsky, M.L. Corradini, S. Malang
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 810-814
Chamber Technology | doi.org/10.13182/FST01-A11963339
Articles are hosted by Taylor and Francis Online.
In order to determine whether the EVOLVE fusion blanket design is viable, thermal-hydraulic analyses were performed on the outboard liquid lithium blanket trays. Various methodologies were employed to determine the vapor fraction distribution within these liquid metal trays. Detailed analysis of the vapor fraction is required for understanding of neutron streaming and for heat removal issues involving the liquid lithium trays. The effect of the magnetic field on the liquid lithium pool is still not fully understood and can strongly influence the potential mode of heat removal. Vapor fractions may be greater than 50% for negligible magnetic coupling between the system and the liquid lithium pool. If the magnetic field is coupled to the liquid lithium pool smaller vapor fractions are predicted, ranging up to 12%. Experiments are proposed to determine the magnitude of this coupling and ultimately the vapor fraction distribution of the liquid lithium pool.