ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M.H. Anderson, J.G. Murphy, M.E. Sawan, I.N. Sviatoslavsky, M.L. Corradini, S. Malang
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 810-814
Chamber Technology | doi.org/10.13182/FST01-A11963339
Articles are hosted by Taylor and Francis Online.
In order to determine whether the EVOLVE fusion blanket design is viable, thermal-hydraulic analyses were performed on the outboard liquid lithium blanket trays. Various methodologies were employed to determine the vapor fraction distribution within these liquid metal trays. Detailed analysis of the vapor fraction is required for understanding of neutron streaming and for heat removal issues involving the liquid lithium trays. The effect of the magnetic field on the liquid lithium pool is still not fully understood and can strongly influence the potential mode of heat removal. Vapor fractions may be greater than 50% for negligible magnetic coupling between the system and the liquid lithium pool. If the magnetic field is coupled to the liquid lithium pool smaller vapor fractions are predicted, ranging up to 12%. Experiments are proposed to determine the magnitude of this coupling and ultimately the vapor fraction distribution of the liquid lithium pool.