ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mahmoud Z. Youssef, Hesham Khater, Mike Kotschenreuther
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 804-809
Chamber Technology | doi.org/10.13182/FST01-A11963338
Articles are hosted by Taylor and Francis Online.
Plasma stabilization and plasma elongation are best achieved by keeping a stabilizing shell as close as possible to the plasma. In CLiFF design, a 2-cm-thick flowing liquid layer is placed in front of a solid FW and is thought to be used as an active conduction shell if its conductance is relatively high such as with liquid lithium. On the other hand, higher conductance is achieved by solid shells (e.g. Cu, Al, FS, W, V alloy). In the present study, the adverse effect of this stabilizing shell (whether it is liquid or solid material) on tritium breeding ratio (TBR) is investigated. Among the design features that quantify this effect are: the type of breeder and structure, the degree of Li-6 enrichment, the material and thickness of the shell, and whether or not there is a front beryllium multiplying zone in the blanket. Additionally, the presence of a solid conducting shell near the FW will impose a safety concern in the case of LOCA. The present study addresses this concern and comparison of the level of decay heat and waste disposal rating is made among the candidate materials for the stabilizing shell.