ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Blue Wave recognized with IAEA innovation award
The International Atomic Energy Agency presented its 2025 Global ISOP Innovation Award for AI to Blue Wave AI Labs, Constellation, and the Southern Company subsidiary Southern Nuclear for the companies’ collaborative work on Blue Wave's ThermalLimits.ai. The technology is an AI application that provides accuracy in online thermal limit forecasting for boiling water reactors.
R. W. Moir, R. H. Bulmer, K. Gulec, P. Fogarty, B. Nelson, M. Ohnishi, M. Rensink, T. D. Rognlien, J. F. Santarius, D. K. Sze
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 758-767
Chamber Technology | doi.org/10.13182/FST01-A11963330
Articles are hosted by Taylor and Francis Online.
A thick flowing layer of liquid (e.g., flibe–a molten salt, Sn80Li20 or Li –liquid metals) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. The resulting temperature for evaporation estimates called, Teff, is 660, 714 and 460°C for flibe, SnLi and Li, where thermal conductivity was assumed enhanced by a factor of ten for flibe. The corresponding evaporative flux from the wall must result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. The calculations show core impurity levels adequately low for Li and Sn80Li20 but is about ten times too large for flibe. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field.