ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
R. W. Moir, R. H. Bulmer, K. Gulec, P. Fogarty, B. Nelson, M. Ohnishi, M. Rensink, T. D. Rognlien, J. F. Santarius, D. K. Sze
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 758-767
Chamber Technology | doi.org/10.13182/FST01-A11963330
Articles are hosted by Taylor and Francis Online.
A thick flowing layer of liquid (e.g., flibe–a molten salt, Sn80Li20 or Li –liquid metals) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. The resulting temperature for evaporation estimates called, Teff, is 660, 714 and 460°C for flibe, SnLi and Li, where thermal conductivity was assumed enhanced by a factor of ten for flibe. The corresponding evaporative flux from the wall must result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. The calculations show core impurity levels adequately low for Li and Sn80Li20 but is about ten times too large for flibe. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field.