ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. W. Moir, R. H. Bulmer, K. Gulec, P. Fogarty, B. Nelson, M. Ohnishi, M. Rensink, T. D. Rognlien, J. F. Santarius, D. K. Sze
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 758-767
Chamber Technology | doi.org/10.13182/FST01-A11963330
Articles are hosted by Taylor and Francis Online.
A thick flowing layer of liquid (e.g., flibe–a molten salt, Sn80Li20 or Li –liquid metals) protects the structural walls of the field-reversed configuration (FRC) so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhancement of convection near the surface to transport hot surface liquid into the cooler interior. The resulting temperature for evaporation estimates called, Teff, is 660, 714 and 460°C for flibe, SnLi and Li, where thermal conductivity was assumed enhanced by a factor of ten for flibe. The corresponding evaporative flux from the wall must result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D transport code for the resulting impurity ions; these ions are either swept out to the distant end tanks, or diffuse to the hot plasma core. The calculations show core impurity levels adequately low for Li and Sn80Li20 but is about ten times too large for flibe. An auxiliary plasma between the edge plasma and the liquid wall can further attenuate evaporating flux of atoms and molecules by ionization. The current in this auxiliary plasma might serve as the antenna for the current drive method, which produces a rotating magnetic field.